

Tip-to-tail SLAC: Calorimeter test run

Kim Siang Khaw Muon g-2 Computing Review Nov 07-08, 2016

Content

- Motivation
- Overview of SLAC calorimeter test run
- Offline computing framework
- User friendly tools
- Summary

Motivation

- End-to-end test of the calorimetry system
 - Lead Fluoride (PbF₂) Cherenkov calorimeter
 - Laser-based calibration and monitoring system
 - Custom 800 MSPS fast digitizer
 - FC7 trigger and clock distribution system
 - DAQ (frontend and backend)
 - art-based offline computing framework
- · Characterization of the calorimetry system
 - Energy and timing resolution of the calorimeter
 - Stability of the energy scale
 - etc

SLAC End Station A

Calorimeter (PbF₂ + SiPM)

Calorimeter (PbF₂ + SiPM)

Laser calibration and monitoring system g-2

SiPM gain monitoring - high stability 405 nm PicoQuant laser

Laser calibration and monitoring system ____

- SiPM gain monitoring high stability 405 nm PicoQuant laser
- Laser intensity monitoring Source monitor (PINs & PMT)

Laser calibration and monitoring system ___

- SiPM gain monitoring high stability 405 nm PicoQuant laser
- Laser intensity monitoring Source monitor (PINs & PMT)
- Laser light distribution chain monitoring Local monitor (PMTs)
- Target SiPM gain stability ~ 10⁻⁴/hour

Offline framework (Pre-SLAC)

MIDAS-to-art

MIDAS Event Structure

stored as data products (header, data) and put into art event

Data unpacking and parsing

Bank: C	Γ01 Ler	igth: 3	22204(I*1)/8	30551(]	[*4)/16	51102(7	ype)
1->	30024	2	71	54	196	0	14149	0
9->	42	0	1801	1805	1799	1801	1794	1807
17->	1804	1802	1794	1775	1158	-119	-599	-39
25->	933	1609	1805	1767	1705	1719	1769	1819
33->	1858	1879	1894	1900	1882	1874	1851	1850
41->	1840	1844	1847	1869	1886	1905	1902	1899
49->	1880	1864	1832	1820	1746	1763	1756	1755
57->	1741	1754	1753	1603	620	-284	-239	514

Simple data format

(GPU pre-processed data, DAQ timing data)

Waveforms (chopped)

Headers

Waveforms (raw)

Raw digitizer data

gm2parser classes

```
gm2parser::FedRider fedRiderCH;
fedRiderCH.AddRider(channelData);

if(verboseLevel_> 1){
    std::cout<<"\t\t---> Entering Channel #"<<fedRiderCH.ChannelTag()<<std::endl;
    std::cout<<"\t\tFillType: "<<fedRiderCH.FillType()<<std::endl;
    std::cout<<"\t\tWaveformGap: "<<fedRiderCH.WaveformGap()<<std::endl;
    std::cout<<"\t\tWaveformCount: "<<fedRiderCH.WaveformCount()<<std::endl;
    std::cout<<"\t\tWaveformLength: "<<fedRiderCH.WaveformLength()<<std::endl;
    std::cout<<"\t\tTrigNum: "<<fedRiderCH.TrigNum()<<std::endl;
    std::cout<<"\t\tDataIntCheck: "<<fedRiderCH.DataIntCheck()<<std::endl;
}</pre>
```


Fill event topology

Data reconstruction

Energy calibration

Gain correction 1 (SiPM)

Gain correction 2 (Laser)

Time correction

μ **ğ-2** ····

- The digitized waveforms are not time aligned
- Laser sync pulses are configured to arrive after the "begin-of-fill"
- Align time in each channel to this pulse on per-fill basis

Offline framework (Post-SLAC)

ROOT/C++ framework

Event display & Data processing monitor ___

- Simple C++ program using ROOT library
- take root file as input, can plot the waveform and the fit results at the same time
- extremely helpful for DAQ/ detector debugging

- Monitoring current MIDAS DAQ file
- Monitoring current file being processed by offline machine

Analysis User Guide

- Similar to Muon g-2 computing manual but focus on physics analysis and SLAC specific info
- Also documented the measurement program to aid the analysis
- A good starting point for future analysis guides

https://github.com/kimsiang/SLAC2016/tree/master/AnalysisManual

Preliminary results

Production

- Dataset collected at SLAC is great for practicing the production routine
- We used Fermi FTS to transfer the raw MIDAS file to dCache tape-backed area
- Since the offline processing rate was close to the DAQ rate (12 Hz), 4 weeks of test beam ~ 4 weeks of processing on single-core
- Initially we have used only jobsub to reprocess all the files
- Then we used jobsub + SAM + ifdh to reprocess a subset of the files (tested all the Fermilab supported services we will be using for the experiment)
- All the reprocessed files are stored in the dCache persistent area

Summary

- We had a successful end-to-end test run of the calorimetry system at SLAC in summer 2016
- The offline framework worked reasonably well and provided many valuable feedbacks to the calorimetry system
- We have developed several user friendly tools to aid the data analysis (ROOT/C++ framework, event display, data processing monitor, analysis user guide)
- We have tested the full production chain (FTS, jobsub, SAM, ifdh)
- Analysis is still ongoing, results expected ~ 3 months from now
- Based on our experience at SLAC, we are working towards a fast turnaround physics analysis framework (nearline analysis) utilizing TBB multithreading

Backup Backup

Timing test (as of this review)

TimeTracker printout (sec)	Min	Avg	Max	Median	RMS	nEvts
Full event	0.0606531	0.0689881	0.501452	0.063798	0.0435458	100
unpackerPath:fc7Unpacker:FC7Unpacker	7.604e-05	0.000102685	0.00109262	9.0768e-05	0.000100388	100
unpackerPath:headerUnpacker:HeaderUnpacker	8.3824e-05	0.000107083	0.000941674	8.80715e-05	8.62767e-05	100
<pre>unpackerPath:islandUnpacker:OnlineIslandUnpacker</pre>	0.000642255	0.000724877	0.00135163	0.000711773	7.16665e-05	100
unpackerPath:islandFitter:TemplateFit	0.0579027	0.0661387	0.494832	0.0609873	0.0431672	100
<pre>unpackerPath:energyCalibrator:EnergyCalibrator</pre>	0.000242105	0.000267431	0.000674476	0.000253493	4.61028e-05	100
unpackerPath:gainCorrector:GainCorrector	0.000232165	0.000259864	0.000460291	0.000242228	3.48295e-05	100
unpackerPath:hitCluster:HitCluster	0.00115472	0.00130267	0.00187135	0.00128985	8.2678e-05	100
unpackerPath:TriggerResults:TriggerResultInserter	1.3608e-05	1.48846e-05	3.0534e-05	1.41715e-05	2.91178e-06	100
end_path:outfile:RootOutput	2.015e-06	2.57126e-06	1.4517e-05	2.267e-06	1.51856e-06	100
end_path:outfile:RootOutput(write)	0.0597246	0.0613416	0.0658187	0.0611854	0.0011628	100

Current processing time (single-core)

* SSD/HDD = 0.7

Conditions	Offline processing [ms]	*RootOutput [ms]		
1 calorimeter	69	42/61		
24 calorimeters	1656	1008/1464		
50% less pulses (Muon g-2)	828	504/732		
Total	1332/1560 ms			

- 0.75/0.6 Hz (if we write out everything)
- 1.2 Hz (if we skip the root file output)
- write speed ~ 10 MB/s (SSD, c.f. gm2 simulation ~ 40 MB/s)

Q: How do we go from I Hz towards I2 Hz?

